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II

ABSTRACT

The conversion efficiency of parametric amplification

in fluids is low because of the low dispersivity. A

discontinuous change in phase velocity at the boundary of a

waveguide introduces dispersion, which in turn affects

conversion efficiency. It is the purpose of this thesis to

develop from first principles an analytical model which may

be used to numerically predict the conversion efficiency of

a flat-plate, acoustic waveguide given the physical

parameters of the system.

To quantify weak, finite-amplitude interactions in the

guide, the linear behavior of the system is analyzed using

Green's functions. Once the linear characteristics have

been determined, nonlinear phenomena are investigated, both

analytically and numerically via digital computer graphics.

The physical parameters in the numerical examples are chosen

to correspond with materials used in previously published

experimental work using cylinders rather than flat plates.
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Chapter I

INTRODUCTION

The interaction of finite-amplitude acoustic waves in

layered media differs significantly from free-field

behavior. In order to investigate these differences, the

properties of nonlinear acoustic wave interactions in

unbounded media must first be considered. In order to

address this issue, therefore, the thesis begins by

comparing the relative advantages and disadvantages of

parametric and conventional linear transducers.

1.1 Parametric Arrays

According to linear acoustic theory, the propagation of

a disturbance in an isotropic, homogeneous medium is

governed by the linear wave equation:

((-V) 2 c- -2a - 0

0 - t 2
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2 -2 a2

where the Laplacian V and the term c o a operate linearly

on the the velocity potential P. Hence, the spectrum of any

wave must remain constant as the disturbance propagates

through the acoustic medium. In order to obtain Equation

(1-1), all second- and higher-order terms of the velocity

potential have been neglected. Whether this is a "safe"

assumption or not depends on the value of the acoustic mach

number E and the absorption characteristics of the medium.I

In an inviscid fluid, nonlinearity plays a role at any value

of E . Moreover, in a viscous fluid, c=O.1 is the limit
2

above which second-order theory begins to fail.

The governing finite-amplitude wave equation with

second-order terms included is given in Chapter III. It is

sufficient to note here, that the distortion of a

propagating waveform and a consequent change in its spectrum

as a function of range are described by these terms. For

example, an initially monotonic, finite-amplitude

disturbance of frequency W 1 in a lossless medium will

eventually become a sawtooth wave, the spectrum of which

contains all harmonics of the sinusoid. The growth of these

1 u
E=-, where u is the particle velocity, and c is the

small signal speed of sound.

2A more viable measure of the manifestation of

nonlinear behaviour in a lossy medium is provided by the
acoustic Reynolds number which, for plane waves, assumes the
form rf=Ek/a which gives a ratio of nonlinearity to
absorption (viscosity) loss per wavelength. If r >1, then
nonlinear effects become dominant. See also Rudenko and
Soluyan, p. 11.

• | ! . . . . .. . ... .. ...
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nonlinearly generated components is at the expense of the

amplitude of the fundamental (energy is, of course,

conserved in a inviscid fluid) as shown in Figure I for the

case of an initially monotonic wave in an inviscid

dispersionless fluid.

For the case of an initially bifrequency waveform

(frequencies w I and w 2 ), not only are harmonics of each

fundamental generated, but interaction between the two

fundamentals produces intermodulation components as well.

Figure 2 schematically depicts the growth and decay of

several components with range. Increased absorption at

higher frequencies is reflected in the sketch where the

lowest possible spectral component, the difference frequency

w-, continues to propagate after the higher frequencies have

been absorbed. Thus, the medium has the effect of a low-

pass filter.
3

The term "parametric array" refers to the finite-

amplitude generation of these intermodulation frequency

components by a bifrequency source. The "length" of the

array refers to the region of interaction within which

energy is transferred from the primary waves to the

nonlinearly generated components.

Parametric arrays are highly directional. For example,

the half-power beamwidth of a nonlinearly generated

3This is only true of thermo-viscous fluids.

A .
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difference frequency is considerably narrower than if

generated directly by a conventional piston projector

radiating at the same frequency; i.e., in order to produce

the same beamwidth conventionally, a much larger transducer

aperture would be required.

However, a major factor inhibiting more extensive use

of parametric arrays is their low conversion efficiency.

"Conversion efficiency" refers to the ratio of energy

transferred to the difference-frequency component versus the

amount of energy initially entering the system via the

primary waves. In a nondispersive fluid, transferred energy

is divided among all nonlinearly generated components, only

a small fraction being supplied to the difference frequency.

However in a dispersive medium where phase velocity is a

function of frequency, some components will interact

resonantly, thus increasing in amplitude with range, while

others will be excited asynchronously producing the spatial

beating effect described in Chapter IV. Under such

circumstances, a limited amount of energy will be

transmitted to those components which are nonresonantly

excited, since their amplitudes never exceed a maximum value

where synchronous interactions are limited only by the

initial strength of the primary fields.

7
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1.2 Statement of Problem

As stated above, a dispersive medium is one in which

the phase velocity of a monotonic disturbance is a function

of frequency. Dispersion may be "medium-induced" (e.g., via

internal relaxation mechanisms or inhomogeneities such as

air bubbles in water or embedded in rubber) or "boundary-

induced", the latter resulting from discontinuities in

density and bulk speed of sound at the interfaces between

two media.

Figure 3 depicts a three-layered acoustic medium where

the discontinuities at x-a and x-O represent the boundaries

of a flat-plate waveguide (medium II). Some of the energy

entering medium II will be internally reflected at the upper

and lower interfaces as it propagates in the positive Z-

direction. It will be shown that the speed at which this

trapped energy propagates through the guide depends not only

upon which mode it is in, but also upon the frequency of the

disturbance. Therefore, if parametric interaction occurs in

a waveguide, where dispersion is induced by the boundaries,

certain spectral components will interact resonantly while

others will be asynchronously excited.

It is the purpose of' this investigation to develop

expressions which may be used to analytically determine the

extent to which the boundary-induced dispersion of a

waveguide can enhance the conversion efficiency of certain
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nonlinearly generated frequency components, namely, the sum

and difference frequencies. The investigation is conducted

in two distinct parts. First, exact analytic expressions

are derived to clearly define the dispersive relationships

of an acoustic, slow waveguide sandwiched between two semi-

infinite media of arbitrary characteristic impedances.

Second, once these relationships are established, the

effects of dispersion on specific nonlinearly generated

intermodulation components can then be evaluated for various

physical systems. To make this evaluation, expressions for

the sum and difference frequency velocity potentials of an

initially bifrequency wave are found via the derivation of

Green's functions.

It should be noted that the equations representing the

velocity potential for the sum and difference frequencies

inside the guide (see Chapter III) contain terms which grow

linearly without bounds as the wave propagates through the

waveguide. These components, which are referred to as

"secular terms", occur for the case of resonant interaction

in a lossless medium. This physical inconsistency is

heuristically explained in Chapter IV. However, to define

the bounds of resonantly excited components, constrained

perturbation theory may be applied to the problem (e.g., the

method of strained parameters), 6 a task that remains a

future research objective.

6A.H. Nayfeh, Perturbation Methods (New York: Wiley-

Interscience, 1973), Section 3.1.
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1.3 Theoretical Framework

The sketch shown in Figure 3 represents a flat-plate,

acoustic, slow waveguide (medium II) of finite thickness "a"

sandwiched between two semi-infinite, homogeneous, fluid

half-spaces of arbitrary characteristic impedances PIc I and

P3c3P where p denotes density and c denotes phase velocity.

The fluid-fluid interfaces at x0O and x=a extend infinitely

in the positive and negative y-directions and semi-

infinitely in the positive z-direction. The term "fluid" is

used in this context to describe a medium having a shear

modulus low enough to neglect the effect of shear waves,

thus permitting only compressional wave propagation to be

considered. Gases, most liquids, and some silastic rubbers

exhibit this property. It is also assumed that the free-

field phase velocity in medium II, i.e., the sandwiched

layer, is less than that in either medium I or III. Without

loss of generality, it is assumed that

(1-2) c 3 c1>c2

where ci (i=1,2,3) represents phase velocity in medium "i".

As shown in Figure 3, the wavenumber vector ki normal

to the plane wavefront is decomposed into transverse and

axial components (K and Xi, respectively) such thati xi

(1-3) i 1 2  2 K 22 + 2

•. -
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where W represents angular frequency (w=2Trf). The

horizontal y-component is assumed to be zero; hence, the

investigation is a two-dimensional problem. The governing

Helmholtz equation for a harmonic field exp(-iwt) in medium

II is

2+ 2 0(1-4) (V + k22) O 0

2

where the Laplacian V in rectangular coordinates is given

by:

(1-5) V2  2 2 2 0)} 2 2 ; 9
ax a z a

and the velocity potential in the frequency domain W is

(1-6) v = V (x,z) exp(-iwt)

or

(1-7) v = V (x z)

where

(1-8) V - + L k 0 )
ax az ay

A.-
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Notice that the unit vector in the z-direction k in Equation

(1-8) is not related to the free-space wavenumber vector

in Equations (1-3) and (1-4).

1.4 Literature Review

Nonlinear wave interactions in a dispersive medium have

been investigated by Nayfeh and Tsai 7 in order to evaluate

the nonlinear effects of the gas and lining material in a

duct. They determined a third-order uniform expansion using

8
the method of multiple scales to analyze the nonlinear

effects on the propagation and attenuation of all existing

modes in a two-dimensional, hard-walled duct lined with an

9
acoustical material. Vaidya and Wang utilized a second-

order expansion to determine the spectral energy transfer in

a lined hard- or soft-walled duct. Both of the above

investigations were primarily concerned with nonlinear

effects on attenuation of a fundamental wave.

7A.H. Nayfeh and M. Tsai, "Nonlinear Acoustic
Propagation in Two-Dimensional Ducts," Journal of the

Acoustical Society of America, 55 (1974), 1166-1172.

8A.H. Nayfeh, Perturbation Methods (New York: Wiley-

Interscience, 1973), Chapter 6.

9 P.G. Vaidya and K.S. Wang, "Nonlinear Propagation of

Complex Sound Fields in Rectangular Ducts, Part I: The
Self-Excitation Phenomenon," Journal of Sound and Vibration,

50 (1977), 29-42.
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Acoustic parametric amplification has been suggested by
10

Ostrovskii and Papilova, who investigated the

amplification of a fundamental wave in an acoustic waveguide

by injecting the second harmonic and utilizing the

dispersivity of the guide to prevent higher-order

interactions. This work was again limited to rigid or free

boundaries.

For linear sound propagation, directivity enhancement

of a conventional circular aperture transducer via an

acoustic slow waveguide (e.g., silicone rubber immersed in

water) has been observed experimentally by Rogers and

Trott and investigated numerically by King.
1 2

Ryder, Rogers, and Jarzynski 1 3 experimentally and

numerically investigated the radiation of a nonlinearly

generated difference frequency in a silicone rubber cylinder

of finite length. However, their results are so completely

1 0L.A. Ostrovskii and I.A. Papilova, "Nonlinear Mode
Interaction and Parametric Amplification in Acoustic
Waveguides," Soviet Physics-Acoustics, 19 (1973), 45-50.

1 1 P.H. Rogers and W.J. Trott, "Acoustic Slow Waveguide
Antenna," Journal of the Acoustical Society of America, 56
(1974), 1111-1117.

12B.j. King, "Numerical Investigation of an Acoustic

Slow Waveguide," Journal of the Acoustical Society of

America, 62 (1977), 1389-1396.
1 3 JD. Ryder, P.H. Rogers, and J. Jarzynski, "Radiation

of Difference-Frequency Sound Generated by Nonlinear
Interaction in a Silicone Rubber Cylinder," Journal of the
Acoustical Society of America, 59 (1976), 1077-1086.

.. .. L ... . J -- : . .... . . . . ... ,,- . ... . "..4--4



14

dependent on numerical analysis that no phenomenological

predictions can be based on it.

1.5 Outline of the Analytical Approach

To derive Green's functions for the problem under

consideration, the linear response of a three-layered medium

to a sinusoidal point source of unit strength in medium II

is deduced. The solutions thus obtained which are expressed

in wavenumber space are then transformed into frequency

space via complex integration techniques. The exact

integral includes contributions from complex as well as real

poles. However, as discussed in Chapter II, only real

poles, which represent trapped energy, are considered. It

is these discrete values of the axial wavenumber that define

the dispersion of the waveguide for guided modes.

Distortion due to nonlinear wave interactions in the

medium is represented by second-order terms of the acoustic

wave equation given in Chapter III. For "weak"

interactions, these second-order terms combine to form a

forcing function which may be treated as a source

distribution. The analytical form of the source

distribution is convolved with the Green's functions to

yield the sum- or difference-frequency velocity potential in

medium II for guided modes.
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Finally, making use of the derived solution, various

characteristics of the nonlinearly generated sum and

difference frequencies are investigated via computer

graphics techniques as outlined in Chapter IV.
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Chapter II

GREEN'S FUNCTIONS

2.1 Definition

In general, the Green's function represents the

solution of a partial differential equation for a harmonic

source of unit strength satisfying specified boundary

conditions. As stated in the introduction, the behavior of

free, dilatational waves in an acoustic medium is governed

by the Helmholtz equation

(2-1) (V +2 + 0

W

where represents the velocity potential in the frequency

domain. Consider a point source of unit strength at a point

(x',z') in medium II (i.e., O<x'<a, O<z') oscillating with

the same frequency as above. The governing equation

describing the acoustic field at (x,z) in medium II is given

by

(2-2) (V2 +k 2 ) G(x,z x',z') - (x-x')6(z-z')

W.
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where Gw(x,zlx',z') represents the Green's function and the

Dirac delta functions on the right-hand side are defined to

be zero everywhere except at the point x=x', z=z' where the

amplitude becomes infinite but the magnitude (or the area

under the curve) is unity. Mathematically, this can be

expressed by the Dirac delta function:

(2-3) a) 6 (x)= 0 x#0

b) 6 (x)dx - 1

Likewise, it can be shown that;

(2-4) f(x)d(x)dx =f(O)

The Green's function Gw(x,zlx',z') can thus be thought of

as the normalized response at an observation point (x,z) to

a poiqt source of unit strength at (x',z'). It is then

obvious from Equation (2-2) that the Green's function will

be independent of a particular source distribution since the

right-hand side of Equation (2-2) represents a point source.

2.2 Velocity Potential in Terms of Green's Functions

If a volume source distribution S (x,z) at frequency U,

exists in medium II, the wave equation assumes the

inhomogeneous form

V. e
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(2-5) (7 2 +-k 2 ) (x,z) =-S (xz)

From the theory of linear differential operators, the

solution of Equation (2-5) in the guide is given by the
14

convolution of GW and 
SW:

z a

(2-6) (x,z) JJ S (x',z') G (x,zlx',z')dx'dz'

00

The above solution is valid for guided modes only, which are

discussed later in the chapter.

The power and versatility of utilizing Green's

functions may be seen in the above equation. Once

G (x,zlx',z') has been determined for a particular medium

with specified boundary conditions; then, the response to

any source distribution may be obtained via convolution.

During the remainder of this chapter, expressions for

Gw(x,zlx',z') will be derived.

The first step in the analysis is to transform

G (x,zlx',z') into wavenumber space. In this manner,

Equation (2-2) becomes an ordinary differential equation

rather than a partial differential equation. The method of

separation-of-the-variables then yields the assumed form for

the transformed Green's function, the coefficients of which

are obtained by matrix inversion (or, in this instance, via

14C. Lanczos, Linear Differential Operators (London:

D. Van Nostrand Co. Ltd., 1961), pp. 206-314.

-.-. I
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Cramer's rule). An inverse transformation from wavenumber

space to real space, achieved via residue theory, then

gives the Green's function for medium II.

2.3 Derivation of GX

As stated above, the Green's function satisfies the

following equation:

d2

(2-7) d + K2 G = -6(x-x')exp(-iXz')
dx X

where

(2-8) GX  = G x(xlx',z') = GW(x,zlx',z')exp(-iXz) dz

Equation (2-7) is a one-dimensional wave equation to

which the following boundary conditions characteristic of a

fluid-fluid interface are applied:

a) continuity of pressure at x=O,a,x'

b) continuity of nornal velocity at x=O,a

c) discontinuity of normal velocity at x=x'.

Since Equation (2-7) is homogeneous everywhere except at

x=x', then Xmay be treated as a velocity potential.

Hence, the boundary conditions become:
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a) P -LGX; at x=O,a,x' for i,j=1,2,3

(2-9) b) __1 i = a X ; at x-0,a for i,j=1,2,3

C) limit GX = -exp(-iXz')

where p. is density in medium i". The discontinuity at x'

implied in condition (c) is a consequence of the nature of a

point source. It is assumed that the point source lies in

medium II (i.e., O<x'<a and O<z'). Due to the infinite

extent of the media along the z-axis, plane waves are

assumed to propagate in the positive z-direction since no

reflected (i.e., backward-going) waves are admitted. In the

transverse direction, energy in medium II is reflected at

the interfaces producing standing waves which are

represented as interfering plane waves propagating in the

positive and negative x-direction. Energy escaping into the

semi-infinite surrounding media propagates away from the

z-axis. The appropriate algebraic sign is chosen to

describe waves which decay to zero at x-+- . The free-space

wavenumber may be decomposed into its horizontal and

vertical components using the following relationship:

L - " - ... . .. . .r - ,,,,.... .
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(2-10) k -= " 2 + X 2
1 .i

where

Ki=transverse wavenumber in medium "i"

and Xifaxial wavenumber in medium "i"

Applying the method of separation-of-the-variables to

evaluate Equation (2-7) in the various regions defined in

Figure 3 produces the following solutions:

(2-11) a) x >a : GX = A1exp(iKIx)

b) a>x>x' : G= B1exp(iK2x) +B 2exp(-iK 2x)

c) x' >x>O : G =C 1exp(iK 2x) +C 2exp(-iK 2x)

d) 0> x : GX =D2exp(-iK3x)

where the coefficients A,, Bi, B2, C1, C2, and D2 depend on

physical properties of the media. As stated above, the sign

convention for the exponents in G is chosen to avoidx
sources at x=+, assuming harmonic time dependence

exp(-iwt). It should also be noted, that in order to

preserve continuity of the wavefront across the boundaries,

the axial wavenumbers,X , must be the same for all three

media:
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(2-12) X1 = X2 
= X3 IX

Applying the boundary conditions given in Equation

(2-9) to the above system yields a set of six linear

equations:

a) p1A1exp(i Ica) =p 2B1 exp(iK 2a) +p 2B2exp(-iK 2a)

b) p2B1exp(i 2x') +P 2B2exp(-ic 2x') = P2C1exp(i 2x') +

P2C2exp(-iK2x')

c) P2CI+P 2C2 
= P 3D2  ,

(2-13) d) K1A1exp(iiIa) = 2B1exp(iK 2a) - c2B2exp(-iK 2a)

e) i 2C - iK2C =-iK3DI) and

f) -iK 2Bexp(i 2x') + i2 B2exp(-iK 2x') + iK2C1 exp(iK2x') -

iK2C2exp(-iK 2x') = exp(-ixz')

The solution may be obtained via Cramer's rule as applied to

the matrix equation shown on the next page [Equation

(2-14) ]

L- A
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Expressions for the six coefficients A1, Bi, B2, CI,

C2, and D2 involve a ratio of sixth-order determinants. A

computer program named SYMLEQ (PSU Computation Center)

performs the algebraic manipulations required for the

solution of the matrix equation AX-B, where elements of the

matrices A and B may be algebraic symbols or numeric

constants. A discussion of the algorithm and general

guidelines for the use of SYMLEQ are given in a PSU program
15

guide. Solving Equation (2-14) (via SYMLEQ) for A1, Bi,

B2, Ci, C2, and D 2 and substituting into Equation (2-11)

leads to the following expressions for GX in each region of

the transverse plane:

Region I, x>a:

(2-15) G = 2expC-iXz')eXpiK (x-a)) [Eexp(iK2x') - Fexp(-iic2x')]

x 412(X)

1 5H.D. Knoble, "Solution of Simultaneous Linear
Equations Involving Matrices Whose Elements are Symbolic
Multivariate (Complex) Polynomials" (Program user's guide,
The Pennsylvania State University Computation Center, 1971).

. . .. ....- _
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Region IIA, a>x>x':

[Aexp(-iK 2 (x-a)) +Bexp~ic 2(x-a))]exp(ic 2 x') +
(2-16) G x exp(-ix(z') -4K2fx

[Cexp(-i 2 (x-a)) +Dexp~iK 2 (x-a))Iexp(-iK 2XI)

Region IIE, x'>x>O:

f[Axp(iK x'-))+Bexp(iK (x'-a)))exp(iK x) +
(2-17) Gx = exp(-ixz') fAx(1 2(x-) 2 2i(X

[Cexp(-iK 2(x'-a)) +Dexp(iic,(x'-a)) ]exp(-iK2 X))

4K 2Y x)

Region 111, x<O:

(2-1) G 2ex(-i~l~ex(-iKX)Gexp-JK 2(x'-a)) -Hexp(iK 2(x'-a))]
(2-18 G 4K 

2ep(iT')xp-i

where the following substitutions have been made in order to

simplify the functional form of the coefficients:

Let



(2-19) a ,p3I3e fip2
3 2 26

23 2 2

2 3
232 2 2

2 2 2

d - pp2 P3 K2 h =plP2 K 2

Then

A - -a+b+c-d E = e-f

B = a+b-c-d F = e+f

(2-20) C = a-b+c-d G = g-h

D = -a-b-c-d H = g+h

Hence, the function T(X) is given by:

(2-21) To() = (i/2)(Aexp(i 2 a)- Dexp(-iK 2a))

- (a+d)sin(ic2 a) + i(b+c)cos(c 2 a)

Note that when 'a' occurs in the exponent, it refers to the

thickness of the waveguide, not the variable in Equations

(2-19) and (2-20).

Notice that Equations (2-15)-(2-18) represent the

transformed Green's functions for medium II since it was

assumed that 0<x'<a. Green's functions for media I and III

have been similarly derived and are given in Appendix C.

Equations (2-15)-(2-18) are in agreement with previously

published work in the field of optics if it is assumed that

P =P 2  
16

-l
fa2 -3 
l
"-
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2.4 Inverse Transformation of G

The Green's functions in the frequency domain

G (x,zlx',z') are now found by taking the inverse Fourier

transform of G X
x

(2-22) G (x,zlx',z') O f x(xlx',z')exp(iXz) dX
2

Due to the complex nature of X, the integration extends over

the entire complex plane. The residue of GX at all of its

poles must be determined in order to evaluate Equation

(2-22) via Cauchy's Residue Theorem. However, as will be

discussed, the contributions from certain poles are

neglected.

The poles of G X form a discrete spectrum of values of

the axial wavenumber X. Real poles are associated with

propagating modes. It is these modes which transport most

of the energy through the waveguide. Complex poles give

rise to leaky wave modes which are more thoroughly discussed
17 18

by Kapany and Burke, and by Marcuse. Leaky modes are

C.C. Ghizoni, J.M. Ballantyne and C.L. Tang, "Theory

of Optical-Waveguide Distributed Feedback Lasers: A Green's
Functions Approach," IEEE Journal of Quantum Electronics, 13
(1977), 843-848.

1 7N.S. Kapany and J.J. Burke, Optical Waveeeuides, (New
York: Academic Press, 1972), pp. 24-34.

D. Marcuse, Theory of Dielectric Optical Waveguides,

(New York: Academic Press, 1974), pp. 41-46.
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those which continually radiate power from the guide as they

propagate down the duct thus being rapidly attenuated.

Finally, in the extreme case, imaginary poles represent

evanescent modes whose amplitudes decrease exponentially

with range. The effects of evanescent modes and leaky wave

modes are thus confined to ranges very near the source.

Hence, considering only propagating modes (or those for

which X is real) and ignoring nearfield effects permits the

integral (Equation (2-22)] to be approximated as a sum of

residues of poles on the real axes only.

The real, axial wavenumber X may range anywhere from

zero to infinity for each frequency. Since it is assumed

that c 3 >c 1 >c 2 , then the free-space wavenumbers are related

by k3 kj<k 2. Also, from Equation (2-10), the magnitude of

the transverse wavenumber in medium 'i" is given by:

K k2 2
(2-23) . = -X ; i= 1,2,3

For X in the range O<X<k 3, all transverse wavenumbers K.

are real and it can readily be seen from Equation (2-11)

that this represents a radiation mode. For X in the range

k 3fk, the transverse wavenumbers K 1  and K 2 are real,

whereas K3  is pure imaginary. Hence, this mode, which is

confined to media I and II with energy decaying

exponentially in medium Ill, is therefore called a substrate

mode. For klfX<k 2 , as seen from Equation (2-23), KI and K3
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are imaginary and K2 is real so that all energy propagating

under these conditions is restricted to medium II, hence,

the term guided mode. Propagation of guided modes is

characterized by total internal reflection at both upper and

lower interfaces. Finally, for X>k 2, all transverse

wavenumbers are imaginary so that no propagating wave can

exist. The term evanescent mode is used to describe this

condition under which all energy decays exponentially in the

direction of wave propagation. Regions for each mode type

are depicted in Figure 4 which shows the relationship

between angular frequency w and axial wavenumber X-

2.5 Discussion of Poles of G

In order to evaluate the integral defined by Equation

(2-22), it is necessary to locate the poles of the integrand

and evaluate the residues. Since GX= F(X)/T(X) the roots of

the equation Y(x)=O define the poles of G . Setting thexI
function T(X)=O results in the following transcendental

equation:
- ........ -iP2P3I<2 + PIP2K2K3 )

(2-24) tan(K 2a) = 2 2

2 P P 3K2 + P2 KIK3

where the transverse wavenumbers are given in Equation

(2-23). Equation (2-24) has two possible solutions for real
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X: either K1, K2 and K 3 are all pure imaginary, or K2 is

real and KI and K3 are imaginary. As discussed earlier, the

former case does not permit a propagating wave to exist.

Hence, for real X, KI and K 3 are imaginary with K2 real;

that is, X is in the range k,<X<k 2. Under these conditions,

only guided modes may propagate as previously discussed and

shown in Figure 4. The transverse wavenumbers may be

redefined to satisfy the above conditions:

(2-25) K1 = iK 1M

K 2 K 2 m

K 3 = 3m

where the subscript "Mf" denotes mode number as well as

indicating a positive, real quantity. Depending on the

magnitude of the argument of the tangent function

(i.e., K2 a), Equation (2-24) has "m" roots for any given

frequency, where the m th pole, +Xm' satisfies the following

transcendental eqaation obtained by substituting Equation

(2-25) into Equation (2-24):

(2-26) tan = 23KM2m2 2m 3m

1lO3 2m-0 2 lm 3m
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It is possible, when dealing with a ratio of functions, for

a zero to cancel a pole and thus eliminate the apparent

singularity. This is the case for one root of Equation

(2-26); in particular Xm k 2 , which is discussed in Appendix

B (see Plane-Wave Mode).

Now, the integrand of Equation (2-22) is more simply

expressed in the following form:

(2-27) G (x,zlx' ,z') J2 G(X x ''z')exp(iXz) dx

= [ F(X) exp(i(z-z')X)dX

where the function F(X) may be deduced from expressions for

GX given in Equations (2-15)-(2-18) and '(X) is defined in

Equation (2-21).

2.6 Contour Integration

As previously stated, the poles of interest lie on the

real axis. By convention, the time factor has been chosen

to be exp(-iwt). Therefore, real poles greater than zero
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correspond to waves propagating in the positive z-direction.

All physical problems involve at least a small amount of

damping which is accounted for by including an imaginary

term, of appropriate algebraic sign, in the axial

wavenumber. It is apparent that for waves propagating in

the positive z-direction (i.e., for z>z'), the imaginary

part of XM must be greater than zero to satisfy the

condition that, as time increases, the amplitude will

decrease to zero as z -- > o. Similarly, for z<z', the

imaginary part must be less than zero. The inclusion of

damping, therefore, shifts the positive poles into the upper

half, and the negative poles into the lower half of the

complex X plane.

A section of the contour of integration for Equation

(2-27) is depicted in Figure 5. Branch cuts must be made

due to the multivalued functions involved (i.e., X =  2 K2 ) .

Contributions to the integral along these cuts have been

neglected for the current investigation. To obtain

exponential decay of the semicircular contribution to

Equation (2-27), the following must be true:

(2-28) limit I exp(i(z-z')x)l =0

1x; '0

This says that the path of integration in the upper half

plane applies to z>z and includes the poles Xm greater than
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zero. Then, by Cauchy's Residue Theorem, the Green's

function G [Equation (2-27)] for forward-guided modes is

given by a sum of residues at the positive real poles X :
U

(2-29) G (x,zlx',z') = Gexp(iXz)dX' 21rex i ~ )d

G exp(iXz)
= 2wi E RES[ >

m=2 X=X >0]

= G+

m=l

where G represents the Green's function for the mth
m

forward-guided mode.

2.7 Evaluation of Residues

The residue of a quotient of functions which has a

first order pole at X=Xm is given by:

(2-30) x=X ]limit[F( )'FS[,(X)  ; = 
m ] 

=  i it ,(X) ,

X-mXm

where V( M) has been differentiated with respect to X

Expressions for G are obtained via Equations (2-30) andm

Ul
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(2-29) together with Equations (2-15)-(2-22) which

originally defined GX.

Region 1, x>a:

(2-31) 0 2ixi (z-z'))exp(-c (x-a)) epicx'-x(i%')

Region IIA, a~x>x'

+ epi zz)([A mexp(-ic 2Cx-a))
(2-32) iepi in-') +

mK~ (Xc 4K+y(m

BDexp(irc2Cx-a))]exp(iK, X')+[ x(ic(-

4K 2(my Xm

Region IIB, x'>x>O

(2-33) G+ = iexp(ix (z-z')) QA m 'Y'K m(x-) +

B mexp( ir 2m(x'-a))]exp(iK 2 x)+Cexp(-iK 2(x'-a))

4
K 2m To" (Xm) +

D mexp(iK 2 (x'-a))]exp(-iK 2m

4K 2'I'(xm)

Region III, x<O

(2-34) G+ -21exp(ix '(z-z'))exp(K x) [G mexp(-iK 2m(x'-a))-
in i 3m 4K 2mv' (Xm)

H mexp(iKc 2(x'-a))]

4 2m ' M
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where the following expressions are obtained by substituting

Equation (2-25) into Equations (2-19) and (2-20):

Let

3 .3
(2-35) am

= -"2 3lmK3m em = ip2 K2mK3m

2 2 2
bim pP 2 K2m K3m 

fm =2 3K2m2

.2 = ip 3Km'12 P3 lm K2m gm 2 im2m

d =P P1P K 2 h hP P2 K 2m 123 2m m 1 2 K2m

Then,

A = -a +b +c -d and E = e -fm m m m m m m m

(2-36) B = a +b -c -d F = e +fm m m ra m m m ma

C -= a -b +c -d G = gm-hm m m in mni m mn

D = -a -b -c -d H = gm+hmmn in m m m mn ini

where

22
(2-37) Klmia m2 -k1

22K 2m =Fk22 Xm2

=X k2
'3m =m -k

The expression for T'(X ) is derived in Appendix A, the

results of which are restated here:



(2 - 3 8 ) '( x ) = x I x +' m3 8aX) X X=±XM

3 In2+ +K3m 2 2

(p23 K 3m+ 2plP2P3 + p2
2 p3 Km

a +
-- Klm 3m

2 2 K 2m
PlP2 K3 ma)sin(K2 ma)+(PlP2 P 3 K2ma+P 2 P3Km

Klm 3a+PlP2 .+P 2 -~)cos(K. a)]

K2m +PP 3m z

By inspection, it can be seen that, for x=x " , G + in region
m

IIA is equal to G + in region liB.
m

2.8 Boundary-Induced Dispersion

It is evident from the form of Equation (2-29) that the

Green's function is expressed as an eigenfunction expansion

of guided modes where the poles of G X(xlx',z') , namely Xm,

are also eigenvalues of the system. Numerical methods used

to evaluate these eigenvalues will be discussed in Chapter

IV.

Once the physical parameters of the system are known

(i.e., density and bulk phase velocity of media , 1, and

III and thickness of medium II), the variation of axial

wavenumber X m  with frequency for each mode may be

determined. For example, Figure 6 shows frequency as a
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function of axial wavenumber for the first few modes of an

infinite flat-plate of silicone rubber 10 centimeters thick

immersed in water.

Several aspects of this graph will be discussed later

in Chapter IV. However, one important point should be made

at this time. In a nondispersive medium, that is one in

which phase velocity is independent of frequency, wavenumber

and frequency are linearly related. Figure 6 illustrates

the fact that for any given mode, low-frequency disturbances

tend to propagate at the higher phase velocity of the

external media (i.e., I and III). Contrariwise, the speed

of higher frequency components asymptotically approaches

that of the waveguide (medium II). This phenomenon is.

referred to as "boundary-induced dispersion" and will be

discussed in greater detail in Chapter IV.
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MEDIUM PHASE VEL. DENSITY THICKNESS MODE CUTOFF(kHz)

I 1500.0 1000.0 0 1 0.00
II 1000.0 1000.0 0.10 2 6.70
III 1500.0 1000.0 CO 3 13.41

SI UNITS

m=3 2 1

-X=k 1=k3

N .. X=k

a2

C3

LL
vi_

i-.00 30.00 886 0.0 t28.80 158IS.8
AXIAL WAVENUMBER (i/M)

Figure 6. Dispersion relationship for first few guided modes in a
0.1 m.-thick slab of silicone rubber immersed in water.
Isospeed lines at X k k2 represent bounds for
trapped energy. Dashed lines indicate cutoff frequencies

for modes m=2,3.

......r
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Chapter III

NONLINEAR WAVE INTERACTIONS IN LAYERED MEDIA

3.1 Introduction

The homogeneous wave Equation (2-1) is a linear,

partial differential equation obtained by neglecting all

terms of second- or higher-order. If, however, convective

and medium nonlinearities are taken into consideration,

inclusion of second-order terms leads to the following

nonlinear wave equation, where viscoelastic and other loss

mechanisms have been neglected:

a2 2 yi(€2

(3 -1) -- C, 2 2 ) = '1 1 1 2 + - 0 2

at2 - 2at

with

y=ratio of specific heat in gases (1+ in liquids) 19

q=the velocity potential.

1 9R.T. Beyer, "Parameter of Nonlinearity in Fluids,"

Journal of the Acoustical Society of America, 9 (1960),
719-721.
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Equation (3-1) is the second-order, nonlinear wave

equation. The source term, or right-hand side of this

equation, contains the square of first-order acoustic

fields. Hence, an originally monotonic sound field will

result in a second-harmonic source term over distances which

are considerably smaller than the critical range at which

bhock formation occurs. The new field, no longer being

monotonic, is again squared over the next incremental

distance giving rise to interaction between the fundamental

and second harmonic, which in turn produces a third-harmonic

field component. In an inviscid medium, this continuous

process eventually leads to the formation of a shock wave,

the spectrum of which contains all harmonics of the

fundamental.

Similarly, bifrequency excitation leads not only to the

generation of harmonics of each primary frequency, but also

to intermodulation frequency components which result from

interaction between the primary fields. Hence, the

principle of linear superposition no longer holds. Of

particular interest are the sum and difference frequencies

(denoted by W,±=w± 2, for wI> Ui).

In general, various loss mechanisms inhibit the

formation of weak shock waves in viscoelastic fluids. Such

loss mechanisms are included via complex wavenumbers in the

current investigation. It is assumed that the nonlinear

interaction is weak enough to allow the velocity potential
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on the right-hand side of Equation (3-1) to be approximated

by a linear superposition of the primary fields. This

approximation, commonly made in weak finite-amplitude

acoustics, has been more thoroughly discussed by Fenlon.
2 0

Using the following Fourier transform relationship,

(3-2) O(x,z,t) = { (x,z)exp(-iwt)dw
where

(-)0(x,z) = O(x,z t)exp(iwt)dt
(3-3) (x, 1,1

the primary fields can then be expressed via the eigenmode

expansion at the two frequencies W1 and W2

(3-4) 1 (X,Z) = Z Cwl exp(i(xwlz+ cWlx))W ~q=_= qq q

(3-5) (x, z) = E C2exp(i(Xw2z +K2x)).

Thus for weak, bifrequency wave interactions in medium II,

if Equation (3-2) is substituted into Equation (3-1), and

only those terms involved in sum- or difference-frequency

2 0F.H. Fenlon, "On the Performance of a Dual Frequency

Parametric Source Via Matched Asymptotic Solutions of
Burg-ers' Equation," Journal of the Acoustical Society of
America, 55 (1974), 35-46.
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generation are retained, the resulting inhomogeneous

Helmholtz equation at these frequencies is given by:

2 _ (*) 14(*)
(3-6) v +k+)O [Vo V1  + ("k') klk2 l*2 ]

- 2  2 12

where 4. represents the "linearized" velocity potential in
W.

medium II, and k. represents the free-space wavenumbers in

medium II for primary frequency i, W+ being the sum or

difference frequency (i.e., W±=W Y2). 1 The superscript

"*" in parentheses which appears in the velocity potential

in Equation (3-6) implies that the complex conjugate only

applies to the difference frequency.

That is,

= 2 for S (x,z)
Li22  +

and

(*) = 2 for S (x,z)

W2 W2-

3.2 Frequency-Domain Solution

The second-order, nonlinear wave equation in the

frequency domain is given by Equation (3-6). It may be

seen, by comparing this equation with the general form of

--------------------

21F.H. Fenlon, private communication, October 17, 1979.
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the inhomogeneous Helmholtz equation given in Equation

(2-5), that the nonlinear terms which are grouped on the

right-hand side of the equation can be thought of as a

forcing function, or volume source distribution in the

guide. This being the case, the velocity potential in

medium II for a particular frequency is given by Equation

(2-6):

za(2-6) O(x,z)= f S,(x',z') G (x,zlx',z')dx'dz'
J w

00

Hence, in order to evaluate Equation (2-6) for the sum- or

difference-frequency comionent, the source distribution

S (x,z) must be determined. By inspection of EquationW+

(3-6), the latter can be expressed as

(3-7) S (x,z) = [V WI  + ( 7 )  k ?2 1 2 l 2

[see Equation (3-6) for definition of terms].

The first step in determining 4+ therefore, is to

cvaluate the source distribution in Equation (3-7). The

next is to convolve the resulting function with the

appropriate Green's function and perform the integration

over x" and z' for a typical mode.

.. . . .. '. ... ... . ." , L _ _ . lll[ ,,n, , ,... . . . '.
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3.3 Source Distribution

The sum- or difference-frequency source distribution

for weak finite-amplitude interaction in medium II is given

22
in Equation (3-7). The primary waves are represented as

eigenmode expansions [see Equation (3-6)] and hence, the

scalar product of the primary velocity vectors is given by

the double summation:

. .(*) _ (*)
(3-8) • + E r &wlC2 [KWlCW2 + X WlxW2j x

w2  q s= - q q q

exp{i[ _X + XsW )z + ( l -+ o2)x]}

Likewise, the product of the primary wave velocity

potentials is simply

(*) - 1 2 (*) W3I W2  u1 m

(39)E E C 1C exp{i[( 1 +X2 )z+ (KUlK s )xI}
I3-9) q ," =-2  

q q -q

Substituting Equations (3-8) and (3-9) into Equation (3-7)

thus gives the following form for the sum- and difference-

frequency source distribution at the source point (x',z'):

It is assumed that all nonlinear wave interactions

occur within the guide (i.e., O<x<a and z>O); therefore, the

velocity potentials and wavenumbers for the primary fields
correspond to medium II. With this in mind, the notation
becomes slightly less laborious.
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(3-0) S (x',z') i r cWc 2(*)[;(xw1xW2+ ICWl V (2 + (Z1)klk-+ c -2  q,s=-- q 2 1 2

exp i[Cx 1 + xA2 )z + (KW 1 KW) W ]I
q -s q- s

where

k± = WC1 + i 2 (1=1,2)

Kwm=transverse wavenumber for mode 'q',
q

frequency WM9 medium I, m=1,2.

m =axial wavenumber for mode "q',

frequency Wmp medium II, m=1,2.

CWm=weighting coefficient for mode 'q',
q

frequency w ; determined by actual source

distribution at face of waveguide (i.e., z=O)

y=ratio of specific heat in gases (+B in liquids) 23

Equation (3-10) defines the distribution of source

points which contribute to the growth of the nonlinearly

generated sum- and difference-frequency fields inside the

waveguide. These points are referred to as "virtual"

sources because they act as point sources scattered

throughout the region of interaction generating the harmonic
24

and intermodulation frequency components.

23R.T. Beyer, "Parameter of Nonlinearity in Fluids,"
Journal of the Acoustical Society of America, 9 (1960),
719-721.

2 4 See e.g., H.O. Berktay and C.A. Al-Temimi, "Virtual

Arrays for Underwater Reception," Journal of Sound and

L
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3.4 Evaluation of +

Recall that the Green's functions for forward-guided

modes in each region are given by a sum of residues at real

poles, which is analogous to an eigenmode expansion:

(2-29) G (x,zlx',z') E G
m=1 m

G+
Expressions for G are given in Chapter II [Equationsm

(2-31)-(2-34)]. Multiplying the Green's functions for

region IIA [Equation (2-32)] by the source distribution

given by Equation (3-10) thus leads to the following

expression for the velocity potential in medium II as per

Equation (2-6):

(3-11) 4 (x,z) = - (--) E E C C R X Z+ 4c 2 m=1 qs=- q s

where

(I- - W1 W2 W
-- )kk + (X X +l 2)

R 12 g s,
w+ +

m

= transverse wavenumber in medium II (see text)m at frequency w+ for mode m

and

Vibration, 9 (1969), 295-307.
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(3-12) X - transverse component

a

= (Aexp(-iK -(x-a)) +B exp(ix---(x-a)) exp(i&+x')dx'
m m M x

0
a

w!

+ [Cmexp(-iK -(x-a))+Dmexp(ii ±(x-a))] exp(iAx')dx'

0

(3-13) Z axial component°+z
exp(ix )t exp(iazz')dz'

where

A+ = W + K +
x q - s m

A- I w 2 W+

x q - s m

A X W 2 X W+
z q - s m

and Amp Bm, Cm, Dm are all defined in Equation (2-36),

T'(X±-) being given by Equation (2-38).

The velocity potential is thus represented as a triple

summation over m, q, and s, where m represents the mode in

which the sum or difference frequency propagates, and q and

s are the modes excited by the primary field sources W, and

W2 at zO.

In order to examine the contribution of a particular

set of modes, terms for positive and negative q and s should

be included for each integer value of m, since waves travel

in both the positive and negative x-directions inside the
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guide. Therefore, for fixed values of m, q, and s, the x-

component of Equation (3-11) involves two terms designated

by a subscript (i.e., X+ and X-) to distinguish between q

and s being greater or less than zero. Then since

b

(3-14) exp(iar)dr =b exp(iab/2)sinc(ab/2)

0

where sinc(x)=sin(x)/x, the transverse and axial components

of Equation (3-11), i.e., Equations (3-12) and (3-13),

become:

(3-15) X+ = (J+K)exp(iK ) + (L+M) exp(-ix-X)
m m

where

+ w + +5= B a sinc(A a/2)exp(-i(K --a- +a/2))m m x

K= D a sinc(A+ a/2)exp(-i(Kw -+a-A +a/2))

m x m x+ C-a++L= A a sinc(A a/2)exp(i( m - xa/)

M= C a sinc(A a/2)exp(i(Kw--a+ 6-a/2))
m x m x

and
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(3-16) X_= (U+V)exp(iKm- X) + (W+Y)exp(-iK -x)

where

U= B a sinc(A a/2)exp(-i(ic--a+AJa/2))
m x m x

+ W+ + l2
V= D a sinc( +a/2)exp(-i(- --a+ a/2))

mx m x

W.W= A a sinc(Aa/2)exp(i(o. ia- A-a/2))m xm x

Y=Ca sine (A:a/2) exp (i(icW + a-A+a/)
Y-- x m x

and

(3-17) Z = exp(ixmz)M exp(iA z)-

z

Therefore, a typical term of Equation (3-11), after

integrating with respect to x' and z' and fixing m, q, and

s, is given by:

(3-18) 0,,,+(x,z)=- R Z (Cq C s2X + CqI Cs2 X )W+ 4c 2  q s + q s

where * indicates a complex conjugate.
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Chapter IV

NUMERICAL ANALYSIS

4.1 Determination of Axial Wavenumber

As discussed in Chapter II, eigenvalues of the layered

waveguide system under consideration are determined by

examining the poles of the Green's functions, Gx(xlx*,z'),

in wavenumber space. The real poles Xm, obtained by setting

'( X )=O, are simply the real roots of Equation (2-26). As

stated in Section 2.4, the axial wavenumber must lie in the

range k, Xm~k2 for guided modes to propagate. Due to the

periodicity of the tangent function, several different

values of the form (see Equation (2-26)]:

(4-1) G cos (K2m a) =Hsin(K2ma)

whereG = p2 P3 K2 mcim+ lP 2 K 2 m 3m

H~p~c2 2
HplP3K2m -p2 )lm3m

It is then obvious from Equation (4-1) that the first real

root occurs for K ma in the range O< Kma<W, the second for
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1T< ma<2 , and so on. 25 In general, then, the axial

wavenumber for guided mode m represented by the positive

real roots of Equation (4-1), Xm, must lie in the range

(4-2) k2  [!] 2 <. X < - (ml)2 2

Since X >k for guided modes, 26in- Ithe lowest possible

frequency that may propagate in mode m is given by:

(4-3) f = (m-i) 1 1
Cm 2a c c 12

th

where fc denotes cutoff frequency of the m mode.
m

The asymptotes described by the left-hand side of

Equation (4-2) represent the limiting cases of "rigid" and

"soft" (pressure release) boundaries on medium II since the

eigenvalues of the systems are defined as

= m 27

(4-4) K 2m m m =0,1,2,3,... 2

Symmetric and asymmetric modes for each condition are

accounted for by m being even or odd (e.g., for rigid walls,

25A listing of the FORTRAN program written to

numerically determine the roots of Equation (4-1) is given
in Appendix D.

2 6See Section 2.4.

2 7The m=O, or plane-wave, mode can occur only for rigid
boundaries (see Appendix B).

- a ------ ..
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m even implies symmetric modes; for soft walls, m even

represents asymmetric modes). Figures 7 and 8 show the

variation of the axial wavenumber, Xm, with frequency for

the first few modes of two, three-layer waveguides with

semi-hard (Figure 7) and semi-soft (Figure 8) boundaries.

The asymptotes given by Equation (4-2) are shown to

represent perfectly rigid or soft walls. Since it was

assumed that c 3>cI>c 2, the cutoff frequency (Equation (4-3)]

is independent of the speed of sound in medium III.

As shown in Figures 7 and 8, low frequencies tend to

propagate at or near the phase velocity of the outer medium.

With increasing frequency, the phase velocity asymptotically

approaches the bulk speed of sound in medium II. This is

the result of what is referred to in Section 2.8 as

boundary-induced dispersion. The dispersivity exhibited by

an acoustic, slow waveguide dramatically influences the

behavior of nonlinearly generated spectral components. A

discussion of these effects is presented following the next

section.

4.2 Mode Shapes

As with any bounded system, each mode has its

characteristic mode shape which is defined by the

eigenfunctions of the system. The eigenmode expansions of

LA I -A
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MEDIUM PHASE VEL. DENSITY THICKNESS MODE CUTOFF(kHz)

I 2000.0 2000.0 00 1 0.00
II 500.0 2000.0 0.10 2 2.58
III 2000.0 2000.0 00 3 5.16

4 7.75

SI UNITS

X=kI=k3 Iasymptotes

-- m=3

N X~2

.00 24

0
Lij

'0.0 20.00o 410.0 60s'.0 o08.0 '8100.00
AXIAL WAVENUMBER (OIM)

Figure 7. Dispersion relationship for first few guided modes in a

0.1 m.-thick waveguide bounded by semi-hard media. Dashed

lines indicate cutoff frequencies for modes m = 2, 3, and 4,
and curves marked "asymptotes" are bounds for each
mode (see Equation (4-2)).

L..I
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MEDIUM PHASE VEL. DENSITY THICKNESS MODE CUTOFF(kHz)

I 2000.0 200.0 1 1 0.00
II 500.0 2000.0 0.10 2 2.58
III 2000.0 200.0 00 3 5.16

4 7.75

SI UNITS

XN 1 k aymtoe

m=

Li

.0 200 0.00 d8.00 8'e.00 ie~e
AXIAL WAVENUMBER (I/M)

Figure 8. Dispersion relationship for first few guided modes in a
0.1 m.-thick waveguide bounded by semi-soft media. Dashed
lines indicate cutoff frequencies for modes m=2,3, and 4,
and curves marked "asymptotes" are bounds for each
mode (see Equation (4-2)).



57

the velocity potential given in Chapter III, via Equations

(3-4,5), may be re-expressed in terms of cosine and sine

functions:

(4-5) E [Awlcos('Bx)+Blsin(WX Iexp(ixwlz)
q=_ q 2q q 2q q

and

(4-6) = sE - [C 2cos(Kw2  ) +Dsin(<2)) exp(i x z )

The velocity or pressure distribution of the source at the

face of the waveguide (i.e., at z=O) determines the extent

to which each mode is excited. If, for example, the

velocity profile of a transducer matched that of any single

mode, then only that mode would propagate down the guide.

The series expansion of Equation (4-5) would then be

expressed as a single term representing the particular

excited mode, while the coefficients A W1 and BW1 for all
q q

other modes would be identically zero. If, however, the end

conditions are not perfectly matched, then several modes may

be excited, all of whose cutoff frequencies are below the
28

excitation frequency.

Since the transverse pressure distribution in medium II

at a fixed range is proportional to the time derivative of

2 8M. Redwood, Mechanical Waveguides (New York:

Pergamon Press, 1960), pp. 77-84.
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the velocity potential, then the variation with x, or the

mode shape, is given by the transverse component of Equation

(4-5) for a particular mode q=m:

(4-7) Fm(x) A mCOS(K 2mx) + B msin( 2mX)

where coefficients A and B are determined by the sourcem m

distribution. However, the ratio B /A may be found throughm m

application of boundary conditions to Equation (4-5) for

guided modes:

(4-8) B m  
02 K3m

Am P3K2m .

Thus, the function F (x), normalized to Am9 becomes:

F (x) 2K3m(49) m cos(K 2 X) + sin(K 2 X)

A m 2 3 2m

The coefficient A outside the brackets has no effect on the

shape of individual modes and thus may be ignored.

The shape of the first three modes at various

frequencies for a two-layered medium is depicted in Figures

9-11. These cases correspond to a large flat plate of

silicone rubber immersed in water.
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MEDIUM PHASE VEL. DENSITY THICKNESS MODE m=l

I 1500.0 1000.0 00 CUTOFF(kHz) 0.00

II 1000.0 1000.0 0.10

III 1500.0 1000.0 00 FREQ.(kHz) 5.0
10.0
15.0

SI UNITS

x=a

15.0 kHz

- ____xa/2

10.0

5.

i 1

CQ

0.00 1.00 2.00 3.00 4.00

Figure 9. Transverse pressure distribution in medium 1I at fixed

range for m=1 mode at 5, 10, and 15 ktIz. Vertical axis

represents vertical distance from medium III and horizontal

axis is given by Equation (4-9). Physical parameters

correspond to a 0.1m.-thick slab of silicone rubber immersed
in water. ST units used.
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MEDIUM PHASE VEL. DENSITY THICKNESS MODE m=2

I 1500.0 1000.0 CO CUTOFF(kHz) 6.70
II 1000.0 1000.0 0.10
III 1500.0 1000.0 CO FREQ.(kHz) 10.0

15.0
SI UNITS 20.0

x~a

M- 10.0 kllz

215.0

- _ __ ___ -x'a/2

40.

2 2(5-.0 -1I. 08 8. 8 t 1. 8 2.8

Figure 10. Transverse pressure distribution in medium IT at fixed
range for m=2 mode at 10, 15, and 20 kHz. Vertical axis
represents vertical distance from medium III and horizontal
axis is given by Equation (4-9). Physical parameters
correspond to a 0.1m.-thick slab of silicone rubber immersed
in water. SI units used.

"" *I. '
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MEDIUM PHASE VEL. DENSITY THICKNESS MODE m=3

1 1500.0 1000.0 0 CUTOFF(kHz) 13.41

II 1000.0 1000.0 0.10

III 1500.0 1000.0 0 FREQ.(kHz) 15.0
20.0

* 25.0
SI UNITS

0 -- - x=a

-25.0 kHz

CD 15. 20.0

(0

(%j

2X00 -1-0 00101.0 2.016
,/ F(X)/A 3

7 Figure 11. Transverse pressure distribution in medium II at fixed

range for m=3 mode at 15, 20, and 25 kHz. Vertical axis
represents vertical distance from medium III and horizontal
axis is given by Equation (4-9). Physical parameters
correspond to a 0.Im.-thick slab of silicone rubber immersed
in water. SI units used.
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Hence, the phase velocity and density correspond to previous

29
experimental work. It should be noted that the increase in

amplitude at higher frequencies for each mode further

demonstrates the effect of dispersion discussed above.

Finally, the variation of mode shape with changing

boundary conditions for the lowest mode (m-) is shown in

Figure 12. The appearance of spreading seen for lower

values of pc (i.e., softer boundary conditions) at a given

frequency is explained by Figures 7 and 8. The harder the

boundaries, the less influence media I and III (which in all

of the cases depicted are identical) have on the acoustic

field in medium II.

4.3 Behavior of Nonlinearly Generated Components

in Dispersive Media

The lowest spectral component produced by the nonlinear

interaction of two primary waves of frequencies w 1 and w2 is

the difference frequency U_(=U-W 2 )• The propagation

constant of the volume source produced via interaction of

the primary waves at this frequency is determined by a

2 9J.D. Ryder, P.H. Rogers and J. Jarzynski, "Radiation

of Difference-Frequency Sound Generated by Nonlinear
Interaction in a Silicone Rubber Cylinder," Journal of the
Acoustical Society of America, 59 (1976), 1077-1086; See

so Figure 6.
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(a) (b) (c)

MEDIUM PHASE VEL. DENSITY PHASE VEL. DENSITY PHASE VEL. DENSITY

I 1500.0 1000.0 1500.0 1000.0 1500.0 1000.0

II 1000.0 200.0 1000.0 1000.0 1000.0 5000.0

III 1500.0 1000.0 1500.0 1000.0 1500.0 1000.0

MODE m=l THICKNESS = 0.1 m. SI UNITS
FREQ.(kHz) 8.0

x=a

co

c(c)

- xa/2

" -(b)

0 (a)-

Q

%.100 I.00 2.00 3.00 4.00 .ee
FCX)/A'

Figure 12. Transverse pressure distribution in medium II for m=1 mode
at 8.0 kIlz for a 0.Im.-thick slab of varying density

immersed in water. Axes are same as for Figure 9.

JEJ
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vector combination of the primary wavenumbers. If this

vector combination does not correspond to the natural

propagation constant of the difference frequency in the

medium, then asynchronous interaction will occur, resulting

in the "spatial beating" effect depicted in Figure 13 for

Az >0. If,however, the primary waves which give rise to the

difference-frequency component propagate at the same phase

velocity as the latter, then Figure 13 shows that

synchronous interaction or 'spatial resonance" occurs

(Figure 13, Az=O). Under this condition, the amplitude of

the nonlinearly generated component will grow monotonically

with range until enough energy has been transferred from the

primary waves to significantly reduce the strength of the

volume source distribution (i.e., forcing function).

In general, the vector A is used to represent the

wavenumber difference between the primary waves and

nonlinearly generated frequency components. Thus, for the

case of the sum- or difference-frequency components

resulting from a bifrequency primary wave interaction,

(4-10) a = n ± mk2 -2knm

In an unbounded, dispersionless medium, the resonance

condition can be satisfied only if the wavefronts of the two

waves are parallel and both propagate in the same direction.

Under these conditions, the linear relationship between

II I |. . .lI .. ,
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A =0 (resonance)

zz

z

A= 4
z

A = 8z
'0.00 1'0003.00 1.00

RANGE CM)

Figure 13. Magnitude of axial component of velocity potential, Z, in
medium II as given by Equation (3-17) for several values
of real Az (=1,2,4,8), hence damping is neglected (i.e. ct=O).
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wavenumber and frequency (k-W/c) necessitates synchronous

interaction. However, in a dispersive medium such as a

waveguide, resonant interaction is not so straightforward

and will be treated in Section 4.4.

As previously stated, the analytical basis for Figure

13 may be found by examining the axial component of the

velocity potential for the difference frequency in medium

II, which was derived in Chapter III [i.e., Equation

(3-17)]. Moreover, since acoustic waves in medium II may be

characterized by their axial wavenumber for each mode, the

vector A becomes a scalar quantity defined for the sum or

difference frequency by -,

(4-11) A =  + ×s2 - × l
z q -s m

where the integer subscripts q, s, and m refer to the modes

in which the primary frequencies ( W, and W2 ) and the sum or

difference frequencies are respectively under consideration.

The variation of the velocity potential with range is

therefore described by the following equation from Chapter

III:

w+ exp(iA z)-i
(3-17) Z exp (iXm$)t iA

z
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where the magnitude of Z is plotted in Figure 13 for several

real values of A • Notice that as A increases, the maximumz z

allowable amplitude of the sum- or difference-frequency

velocity potential decreases. In fact, the maximum

allowable amplitudes IZIma x occur at distances z from thema~ m

source, where

2
(4-12) IZ I max z = am Z

(4-13) Z A m1.3,5,...
Z

Thus, in order to transfer as much energy as possible from

the primaries into a nonlinearly generated frequency

component, such as the sum or difference frequency, A mustz

be minimized for that frequency.

It can be seen from Equation (4-12) that the maximum

amplitude of the nonlinearly generated component can become

extremely large for small A • In fact, for A =0z Z

(resonance), the amplitude grows linearly with range as

shown by Figure 13. This apparently unrealistic situation

may be resolved by considering the fact that the growth of a

nonlinearly generated component is accompanied by the decay

uf the fundamental waves. Eventually, the decreased

strength of the primary fields no longer permits a nonlinear

interaction.

k _ _ , .... . . .... . . .. nm - - " -1
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All real physical systems involve a certain amount of

damping, which is accounted for by including an imaginary
30

term in the axial wavenumbers. In this instance, Equation

(3-17) becomes:

ex~i~li -exp(idzZ)ex(TZ

(4-14) Z = exp(iXWIz) exp(-a z) - za

- Az

where o'T and a + represent damping. The magnitude of Z

given by Equation (4-14) versus range for fixed z, with

absorption as the parameter, is illustrated in Figure 14.

4.4 Dispersion in Medium II

As established in the previous section, the maximum

amount of energy transferred to any nonlinearly generated

frequency component in a lossless, dispersive medium is

31
determined by the difference in axial wavenumbers A • The

term A as described by Equation (4-11) is a function ofz

several independent variables. The X versus W

relationships (e.g., Figures 7 and 8) which characterize the

dispersivity of the waveguide are determined by the physical

30Valid only for "weak" nonlinear interactions.

3 1See Equations (4-11) and (4-12).
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-U)= .001

.05

U)

RANGE CM~)

Figure 14. Magnitude of axial component of velocity potential, Z,
in medium 11 as given by Equation (4-14) for AZ=4.0 with
increasing amounts of absorption (i.e., c=.001,.05,.5,1.0).

- SI units used.
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parameters of the media (i.e., density and bulk phase

velocity of media I, II, and III, and thickness of medium

II). Once this relationship is defined, A may be

determined for the sum- or difference-frequency component of

any given pair of primary waves, as long as it is known in

which modes all four frequencies propagate.

The variation of A for the nonlinearly generated

difference frequency w_ for a fixed ratio W/W_ is shown in

Figure 15. Again, the physical parameters are chosen to

correspond with previous empirical data (i.e., silastic

32
rubber in seawater). The primary waves as well as the

difference frequency are assumed to propagate in the first

mode.

3 2 See e.g., Ryder, Rogers, and Jarzynski, pp.

1077-1086.

LA!
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MEDIUM PHASE VEL. DENSITY THICKNESS PRIMARY MODE q,s =1

I 1500.0 1000.0 00 DIFF. FREQ. MODE m=l
II 1000.0 1000.0 varies
111 1500.0 1000.0 co FREQ. RATIO f If = 10

THICKNESS =.05, .1, .2

SI UNITS

-W
,d

thickness = .05
N-

.20

0. 2.00 4.00 6.00 8.00 10.00
DIFFR FREQ (KHZ)

Figure 15. Variation of Az with difference frequency (f_) for fixed
ratio of primary frequency (fl) to f- (i.e., fl/f_=10.0).
Phase velocities and densities correspond to silicone rubber
immersed in water. It is assumed that the difference
frequency as well as the primaries propagate in mode m=l.
The three curves are for thicknesses of .05, .10, and
.20 meters.
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Chapter V

CONCLUSIONS

A theoretical investigation of weak, nonlinear acoustic

wave interactions in a three-layered medium has been

presented in this thesis. Under the conditions explained in

Chapter I, an acoustic, slow waveguide has been analyzed

both numerically and theoretically, and various

characteristics of linear waveguide theory, as well as

finite-amplitude phenomena, have been treated.

The dispersivity for guided mode propagation in an

acoustic, slow waveguide is clearly defined by the

characteristic equation derived in Chapter II. With the aid

of the computer program listed in Appendix D, exact

numerical data can be calculated given the physical

parameters of the system. Once the dispersion relationship

is established, the maximum allowable amplitude for any

nonlinearly generated component may be calculated simply by

determining the corresponding value of A .z

Expressions which may be used to determine the

r,,tiersion efficiency of weak parametric interactions in

,r pie, layered media (i.e., liquid-like media) have thus

,.veloped. Moreover, a comparison of conversion-

-* * Pnhancement in a waveguide, relative to that in
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an unbounded medium, can now be realized. However, in order

to place an upper bound on conversion-efficiency enhancement

via boundary-induced dispersion, a complete numerical

analysis of strong wave interactions is required. Such an

analysis, which would involve implementation via digital

computer solution of many coupled partial differential

equations, is outside the scope of this investigation. it

is therefore recommended for future study.
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APPENDIX A

Determination of 3' (X)

aX X=Xm

From Equation (2-21):

(A-I) (X) = (a+d)sin(K2a) + i(b+c)cos(K2 a)

where

3a =p 2 K1 K 3

2
b = p p 2P K2 K3

c= P2 P3 1-

9

Then, the derivative is given by:

(A- 2) T ' (X m = DT =X

DT 3K 1 3T DK2 ' 3

aK X 3"2 3x 3K3 ax
X Xm

Also

(A-3) = i=1,2,3(A-3)ax K.

and

(A-4) M, p2 K 3 Sinl(K a) + ip2 P 3 K2 COs(K 2 a)
333
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_ _ = 0 0 0 2 3 2 2 3) o ( 2 +

(A-5) (p p Ka + p 2 KIK3 a + ip 2 P3 K1 + 1p1 p 2 K )COS(K a)+
2 2

(2p102P3 2 - iP2 P3 c1K 2 a - ip 1 2 2K 2 K3 a)sin(K 2 a)

_ 3 2KOSKa
(A-6) DK3 =p2 K sin(K2 a) + iplp2 K COS(K a)

Therefore
2 2

(A-7) ,(xm) = x KlK3m p3 2m KlmK3m + 20102 P3 + P2 03 lma

2

PlP2 K3m a)Sin(K Ma) + (p lP 2 P 3 K2m a +

22 +p2 + P 2

P2 3 m  2 P 3 K lm+p 2 KlmK3ma + p 2 K 3m
Kim K2m

2 K2
1 -) cos(K a)]K3 m 2m

where

Ki iKlm

K2 K 2m

K3 iK3m

.......
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Appendix B

PLANE-WAVE MODE

As discussed in Chapter II, the Green's functions for

the waveguide are expressed as a summation of the residues

of the transformed Green's functions, GX, at the real poles

Xm of G . The real roots of Equation (2-26), restated here,X

represent these poles:

)tan(K a) - K Im 2m
0 203 + C2mK3m0l2

2m 2 2
K2m PlP 3 K 1M&3 mP 2

One root in particular of this equation, Xmk 2 (or K 2m 0),

is not consistent with physical or mathematical assumptions.

It is the purpose of this section to examine the behavior of

G at the root Xmfk 2  and to determine its physical

significance.

Assume, as in Equation (2-27), that G is expressibleX

in the form

(B-2) = (XIX' z exp(ix(z-z')) F(X)

where T(X) is given in Equation (2-21), and F(X), which

changes with each region, may be deduced from Equations

(2-15)-(2-18). For region IIA (i.e., a>x>x');
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(B-3) F(X) Aexp(-- + Bexp (1(0+0) + exp(0+0 + Dexp (i(0-o)
41c 2

0 - K2 (x-a)
where

= K2x'

and coefficients A, B, C, and D are given by Equation

(2-20). Then, since

(B-4) limit r F X
2

is indeterminant, L'Hopital's Rule may be applied with the

following results:

SF(X X =  1
I ax xx=k

(B-5) limit G = limit M 2

X - k2  X - k 2  ax Ix XXm = k2

-KM (x-a) +K 3mX'- K 1MK3m(x'(x-a)) + 1
lm' + 3m + lm3ma

Kl1M +K 3m+K 1MK 3ma

Thus, for guided modes, K1 m and K3m are both positive real

values; therefore, the transformed Green's function Gx in

region IIA remains finite at Xm=k 2 Hence, k 2-X is not a

.ingularity of Gx  even though it is a root of Equation

(2-26). A similar process verifies that for all regions

(i.e., I, IIA, IIB, and III),

(B-6)' limit G (xjx')1
K2-
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remains finite. Physically, this means that an incoming

wave propagating purely in the axial direction of the

waveguide (i.e., Xm=k 2 implies a planar wavefront) will not

propagate as a trapped wave, but will decay as energy is

radiated to the outer media. If, however, medium II had

rigid boundaries, then the plane- wave mode would propagate

as a guided mode.

-Ida_ __________________
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Appendix C

GREEN'S FUNCTIONS FOR MEDIA I AND III

Expressions derived in Chapter II for G+ representm

Green's functions for medium II only. That is, it was

assumed that the point source was in the waveguide (recall

that O<x'<a). If, however, sources occurred outside the

guide, or energy originally radiated from the guide

Fenetrated back into medium II via some coupling mechanism

(e.g., corregated surface structure), then Green's functions

for media I and III would be required in order to evaluate

these effects.

As discussed in Chapter II, the transformed Green's

functions GX, for the waveguide, were derived for each

region and are given by Equations (2-15)-(2-18). In order

to distinguish these from the following expressions which

are obtained by assuming the point source is in medium I or

III, a superscript will be used to denote medium number

(i.e., GI  and GlIIcorrespond to the point source in media I
x x

and III, respectively).

The matrix equations whose solutions determine the

transformed Green's functions for media I and III are given
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-N

cc 0 cc C I 0 u,

x x

x x

CL I

Cc CV 0. lC

x

C..-

C14 0
C14V

se. .4 .,4

x 0

"-4 a

(N ) -N ta.N

-- 4~C1 Q) - (Jt

4a C1

x co-
se C14 C -4

CV (0 C. C

x x 0wS Q) x x 0

- r)

CI C..(N
a '- . XC'

0) X0) -'- 0. ~x

W %e-C.'
0. I C.

-A)
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* by Equations (C-1) and (C-2), respectively.

Following are expressions for the transformed Green's

functions for medium I (i.e., x'>a):

Region IA, x>x':

I x(i 2 1)Cx~K x- +
(C-3) GI= x(iz)xi )[ 2

Region IB, x'>x>a:

(C-4) G X ,exp(-iXz')exp(iK 1x')[epi~.a[Cx~K(-) +

Region II, a>x>O:

I= ~~~PlP 3 K1 K 2COS( 2 X) -i j 1P2IC1 K3 sin(K2 X)(C-5) G X 4exp(-iXz')exp(iK 1X T(X

Region 111, x0O:

(C-6) K ppI 1)9
4exp(-iXz')exp(-iK 3X)eXp(iK xV)

(C-6)X
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The transformed Green's functions for medium III (i.e, x'<O)

are:

Region 1, x~a:

(C-7) G II= 4p 2 03 K 2 K3 ep(-iXz')exp(-iK 3x')exp(iK1 
X)

x 'T(x)

Region II, a>x>O:

(C-8) G =4exp(-ixz')exp(iK a)exp(-iK 3 X) p2 P3 ~1 K3 cos(K 2(x-a)) +

ip 1 03 2 Ic3 sin(K2 (x-a))

Region IILA, x'<x<O:

(C-9) G II x(iz)~~Kaep-i ,[exp(iK 3x) [Dexp(iK,,a) +

Fexp(-iK 2a)]+ +exp(-iK 3x)(LGexp(iK 2a)+ Hexp(-iK 2 a))

'T x)

Region IIIB, x~x':

(c-10) G II=ep-z)epi ex(K Mexp(iK 2a)[Dexp(i 3 XI) +

x x( z'epi 1a x(i 3 x)(

Gexp(-iK 3x')] +exp(-iK 2a)fFexp(iK 3x')+ Hexp(-iK 3 x,)

'Y x)
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The Green's functions are then obtained via an inverse

transformation involving complex integration techniques

(i.e., residue theory) as outlined in Chapter II. Following

are the results for media I and III.

Green's functions for the m t h forward-guided mode for

medium I are:

Region IA, x>x":

I exp(i 2ma)[Cmexp(-imc(x'-a)) +
(C-I I) Gm = 2,riexp(iXm (z-z'))exp(-K mX) [ V'(X)

Dmexp(Kim(x'-a))] + exp(-i 2ma)C[Emexp(-Im 1 (X'-a))
+

P' (XM)

F mexp(K (im(x'-a))]
' ' (Xm)]

Region IB, x'>x>a:

exp (ci (a-x))C [Cexp i2a
(C-12) G I= 27riexp(iX (z-z))exp(-K x')[ lm m

m m im [ (Xm)

Emexp(-iK2ma)] +exp(-Klm (a-x))[Dmexp(iK2ma)+ Fmexp (-ic2m a)]

T'(x m )

LA./
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Region II, a>x>O:

(C-13) G I=-87rexp(ix (z-z'))exp(-ic X)ppKMKMcsK2 )
m m im Y(M

p l2'l'3 si(K2mx)

Region III, x0O:

I -871~P2K1Kmexp(i( z-z'))exp(K 3Mx)exp(-K lmx')
(C-14) G M= -Y'(xM)

And the Green's functions for medium III are:

Region I, x>a:

(C-15) G 111 -81Tp 2p3 K 2mK 3mexp(ix m(z-z'))exp(K 3mx') )exp(-i X)

Region 11, a>x>Q:

(c-16) G M -8rriexp(iX( (z-z'))exp(-K 1Ma)exp(K 3mXI) x

P 3KlM K3mCO o(ic2m (x-a)) + 1P3K 2 m 3 m sin( 2m (,a))
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Region IIIA, x'<x<o:

(C-17) G m 2iriexp(iX M(z-z'))exp(-iclma)exp(K 3 x?)

exp(-K3x)(D exp(iK 2ma)+ F Mexp(-iK 2 a)]

''(X )

exp( 3 x )[G Mexp(iK,)a) +H Mexp(-iK2 m a)]

Region IIIB, x<x':

(C-18) G M II ?7riexp(iX (z-z'))exp(-< lma)exp(K 3Mx

exp(i<, Ma)[D meXp(-K 3mxr)+ G exp(K 3m')J

exp(-iK a) [F exp(-K3 x') +H exp(K X1)]

m

where the following substitutions have been made in

Equations (C-3)- (C-10);

(C-19) T+(X) =2iexp(iK a) [Aexp (i 2 a) + Bexp(-iK 2a))

(C-20) a -~ 3 1cI 2

b 3

2
C p 2  1 K3

d 0PIpKIK3
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(C-21) A=-a+b+c-d E-a-b+c-d

B=-a-b-c-d F-a+b+c+d

C-a+b-c-d G--a+b-c+d

D=a-b-c+d H--a-b+c+d

Equations (C-Il) through (C-18) represent, as in Chapter II,
th

the m guided mode in an eigenmode expansion of the Green's
functions. The poles of GX  are found by setting Equation

(C-19), '(X)=O. Then, for guided modes

(C-22) K1  iKlim

K 2 K 2m

K3 i iK3m

and the terms given by Equation (C-20) become:

(C-23) am.= iP2P3Klm K2m

bm M lP3 K2m2

2Cm M -2 KlMK 3m

d m w iplp2 2m 3m

The coefficients Am Bmv...H are the same functions as given

in Equation (C-21) except for the use of the subscripted

variables defined in Equation (C-23) in place of the a,b,c,d

found in Equation (C-20).

Notice that the determinants of the matrices of

Equations (C-1) and (C-2) are equal [Equation (C-19)], but

M..,
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differ from the determinant found in Chapter II (Equation

(2-21)]. The derivative of Equation (C-19) evaluated at the

poles X-XM,

(C-24) '(X ) 
= 

- aX

therefore should not be confused with the expression derived

in Appendix A, Equation (A-7), which was restated in Chapter

II. This expression [Equation (2-38)] is derived by

assuming the point source lies in medium II.

.....a I .. ,w ,- ,-.1I
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Appendix D

NUMERICAL EVALUATION OF EIGENVALUES:

COMPUTER PROGRAM LISTING

The FORTRAN program named AXIAL (Figure 16) was written

by the author for the purpose of numerically investigating

various characteristics of an acoustic, slow waveguide. The

eigenvalues of the guided modes in medium II are obtained by

evaluating the real roots of the characteristic equation

Stan a) P2p3 lmK2m + 1P2 2m 3m G
(D-1) PlP3K2m 2 -P2 Klm3m

In order to avoid numerical problems at the discontinuities

of the tangent function, a similar form of Equation (D-1)
33

was used in the program:

(D-2) F(X) = Gcos( 2ma) - Hsin( 2ma)

AXIAL utilizes an IMSL subroutine (ZBRENT) to locate

the real roots of an external function F(x). These real

roots are stored in a multidimensional array TRAP(m,n) where

3 3See also Equation (4-1).
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"im" denotes mode and "n" frequency number. Since ZBRENT was

designed to locate the root x' of a function between any two

endpoints a and b such that the product of F(a) and F(b) is

less than zero, care must be taken to insure that exactly

one root exists in that interval before executing ZBRENT.

It follows from the discussion in Section 4.1 that the mth

real root )m lies between the asymptotes described in

equation (4-2). Hence, the interval containing one and only

one root of F(x) is well defined.

Once the roots have been located and stored, the array

TRAP is plotted via the CCS graphics system supported by The

Pennsylvania State University Computation Center.3 4

Examples of the graphics output may be seen in Figures 6, 7,

and 8.

34CCS is an abbreviation for California Computer

Products, Inc. (CalComp) who originally developed the
software.
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C
C AUTHOR:
C DAVID M. YEAGER
C ACOUSTICS DEPARTMENT
C PENNSYLVANIA STATE UNIVERSITY
C
C DATE WRITTEN:
C AUGUST 22,1979
C
C PROGRAM NAME:
C AXIAL
C
C PURPOSE:
C THE PURPOSE OF THIS PROGRAM IS TO COMPUTE THE POSITIVE, REAL ROOTS
C X OF AN EXTERNAL FUNCTION F(X) WHERE 'F' IN THIS CASE IS THE
C CHARACTERISTIC EQUATION FOR A TWO-DIMENSIONAL FLAT-PLATE -SLOW-
C WAVEGUIDE. HENCE THE PHASE VELOCITY IN MEDIUM TWO IS LESS THAN
C IN MEDIA 1 OR 3. IN FACT IT IS ASSUMED THAT C3 > C1 > C2.
C THESE ROOTS REPRESENT THE EIGENVALUES OF THE GUIDE AND ARE
C GROUPED ACCORDING TO MODES BEFORE BEING PLOTTED. THE VERTICAL
C AXIS IS FREQUENCY AND WAVENUMBER IN THE AXIAL DIRECTION IS
C DISPLAYED ON THE HORIZONTAL AXIS.
C
C ---------------

REAL*8 EPS,A,B,F
REAL MAXFR
CHARACTER*8 DA
DIMENSION GAMi (202) ,GAM2(202) ,GAM3(202),FRQ(202),TRAP(10,202),
CFC(30) ALPH1 (202),ALPII2(202) ALPH3(202),DELTA(202),C(3).R(3)

COMMON)AREA1 IGA141I, GAM2I,GAM3I, RO 1 ,RO2,RO3, I, THICK
C
C SEE LISTING OF ZBRENT FOR EXPLANATION OF 'EPS,NSIG,MAXFN"
C 'CI C2 C3' REPRESENT BULK PHASE VELOCITIES FOR MEDIA 1 2,3
C RESPECTIVELY. 'THICK' IS TOTAL THICKNESS OF MEDIUM 2 9INCE THE
C BOUNDARIES ARE AT X=O AND X-A. 'ROZR02,R03' REPRESENT DENSITIES
C OF THE THREE MEDIA. 'MAXFR IS THE MAXIMUM FREQUENCY PLOTTED.
c

READ(5,8000) EPS,NSIGMAXFN
READ (5,8001) C1 C2 C3 THICK ,MAXFR
READ (5,8002) ROIR62,*03
MAXFN I-MAXFN
TWOPI=2.*3. 14159
DUMMY4-I-LAXFR*. 001
WRITE(6,9000) Cl C2,C3,THICK
WRITE(6,9005) ROI,RO2,RO3
WRITE(6,9001) DUMMY4
WRITE (6,9002) EPS,NSIGKAXFN

CC
C CALCULATE CUTOFF FREQUENCY FOR MODE M, STORE IN FC(M),
C AND WRITE RESULTS FOR EACH MODE TO BE PLOTTED.C

M-2
FC(l)-0.

29 ANUM-2.*(M-1.)
DENOMII4.*THICK*SQRT( I./C2**2-. ./Cl**2)

Figure 16. FORTRAN listing of root-finding computer program AXIAL.



91

FCCM) -ANUM/DENOM
FCM-FC MH)
IF (FCH .GT. MAXPR) GO TO 30
WRITZ(6.9004) M,FCM
M-H+1
IF(M .GT. 10) GO TO 7000

*G GTO029
7000 WRITE(6,9020)
C
C 'FREQ' IS THE INITIAL FREQUENCY, 'P' IS THE FREQUENCY INCREMENT,
C WRITE TOTAL NUMBER OF MODES TO BE PLOTTED
C
30 FREQ'100.

P-(MAXR-FREQ)/200.
x-M-1.
NMODE-IFIX(X)
W4RITE (6,9009) NMODE

C
C MAIN LOOP ITERATED FOR 200 FREQUENCIES.
C

Do 5 1-1,200
J-0

GM f(I -TWOPI*FREQ/Cl
GAM2 (I) .TWOPI*FREQ/C2
GAN3 (I-TWOPI*FREQ/C3
GAMII-GAM (I)
GAM21-GAM2 (I
GM3IGM3 (I

C
C BELOW CUTOFF FREQUENCY FC(M) THE MTH MODE IS INITIALIZED TO THE
C WAVENUMBER IN MEDIUM I...GAM11-TWOPI*FREQ/Cl.

C DO 50 N-I ,NMODE
TRAP(N,I)-GAIAII

50 CONTINUE
C
C SELECT ENDPOINTS OF INTERVAL TO BE SENT TO ZBRENT.
C
40 J-J+1

A-GAMI1+. 0001
B-GAM21-. 0001
IFI .GT. 1).B-SQRT(G&41**2-(TWOPI*(J-1.)*2./J4.*THICK))**2 )-.01
IF (FREQ .GT. FC (3+1)) A-SQRT (GAM21**2-(iWOPi4 (J2. ) /(4.*rHICK)

FB-F(B)
IF( FA*FB .LT. 0.) GO TO 10

C
C IF F(A) AND F(B) HAVE TUE SAME SIGN THEN NO ROOT EXISTS IN THAT
C INTERVAL. GO ON TO NEXT MODE OR FREQUENCY.
C

GO TO 41
10 HbAXFNMAXFN I
C
C
C 'ZBRENT' IS AN IMSL SUBROUTINE WHICH LOCATES THE ROOT OF AN
C EXTERNAL FUNCTION 'F(X)' BETWEEN ENDPOINTS 'A' AND 'B'.
C THE ROOT IS RETURNED AS THE VALUE 'B' SUCH THAT 'F(B)-0'.
C

Figure 16. (continued)
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CALL ZBRENT(F EPS NSIG,A B,MAXFNIER)
IF(IER .EQ. 119) do TO 26

C
C STORE ROOTS FOR MODE J, FREQUENCY I IN 'TRAP.
C

TRAP(J 'I)-B
41 IF(FREQ GT. FC(J+1)) GO TO 40

GO TO 4
20 WRITE(6 9006) MAXFN,I
4 FREQ-FRiQ+P
5 CONTINUE
C
C
C BEGIN PLOTTING FREQUENCY VS. AXIAL WAVENUMBER VIA -CALCOIP'
C GRAPHICS SUBROUTINES ..........
C
C PLOT GA142 FIRST SINCE IT HAS THE LARGEST WINDOW. THEN PLOT
C GAMI AND GAM3. USE SCALE AND TRANSLATION FACTORS STORED IN
C GAM2(202) AND GAM2(201).
C
C

CALL PLTTYP(4662 ,6, 7)
CALL START

C
C MOVE ORIGIN 4.0 IN. OVER AND 2.0 IN. UP FROMf LOWER LEFT CORNER.
C

CALL PLOT(4.0,2.O,-3)
CALL SCALE (GAM2 9.020 1
CALL SCALE( FRQ.5 1 0 1)1
CALL AXIS(O0 .6 6 WAVtNU!MBER IN Z-DIRECTION' ,-25,9.O,O.O,

CGAM2(201) GAMI(20)
CALL AXIS(0- 0 ,'FREQUENCY',9,6.5,90.,FRQ(201),FRQ(202))
CALL DATE (DA
CALL SYMBOL(-1.75,-1.75,.125,BA,0.,8)

C CALL LINE(GAM2,FRQ,200,1,O,3)
C

GAIII(201)-GAM2(201)
GAM3 (201)-GAM2 (201)
GAMI (202) -GAM2 (202)
GAM3(202)-GAM2(202)
CALL LINE(GAMIFRQ,200,1,0,3)

C CALL LINE(GAM3,FRQ,200,1,0,3)
C

C O5 -,HD
DO 50 1:1 2N00

GAM2(I) TiAP(K, I)
60 CONTINUE
C CALL NEWPEN(2) THIS STATEMENT CURRENTLY FOR COMMENT ONLY

CALL LINE(GAM2,FRQ,200,1,O,3)
55 CONTINUE
C
C ESTABLISH ARRAYS AND RECORD DATA ON PLOT.

Figure 16. (continued)
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R2 -R02
R(3) -R03
YD-6.5
DO 202 1-1,3
XD-8.O
FLT-C (1)
CALL SYMBOL(XD YD,0 125C- 0,2)
CALL NUMIBER(994.O,999.O0;.12 ,FLT,O.o,1)
FLT-R(I)
XD-XD-1 .5
CALL SYMBOL(XD YD 0 125 , RHO-',0.0 4)
CALL NUMBER(994.O,999.O,0.125,FLT, 6.o,1)
YD-YD-O.25

202 CONTINUE

YD-YD-O *25
CALL SYMiBOL (XDYD,O 125,'THICicNESS(M.)- -0.0,15)
CALL NUMBER (999.O,999.0,O.125,THICK,0.O,25
CALL FINISH
CALL ENDOUT

C
C
C END OF GRAPHICS COHMANDS.....
C
C
8000 FORMAT(F5.3,12,13)
8001 FORMAT (5EI0.3)
8002 FORMATO(E10.3)
9000 FORMATS' CI(M/SEC) -,E11 4 - C2(M/SEC)=',EII.4,- C3(M/SEC)-',

CE11.4, THICK (M)- -ElO.3j
9001 FORMAT (: FREQUENCY RANGE IN KHZ: 0-- EIO.3) ,9002 FORMAT ( *CONVERGENCE CRITERIA FOR ZBAENT: EPS-',F5.3,' ?JSIG-',

C2 'MAI(FN-- 13)
9004 WHRAT ( C ?11 4-',13,' CUTOFF FREQ--,EII.4)
9005 FORMAT (: ROl-' E11.4 - R02;i,El1.4,' R03- ,E1I.4)
9006 FORMAT ( ZBREI~t FAILED To CONVERGE IN MAXFN ITERATIONS. MAXFN-' ,13

C , 1-',15)
9009 toRMAT( TOTAL NUMBER OF MODES M7',13)
9020 FORMAT(' ERROR..EXCEEDED DIMENSION FOR TOTAL NUMBER OF MODES.-)

STOP
END

C
C
C EXTERNAL FUNCTION ' F(X)' IS USED BY ZBRENT TO FIND A ROOT
C 'B' SUCH THAT 'F(B)=0'
C

FUNCTION F(X)
REAL*8 X,F
COMM1ON/AREAl/GAM11,GAM21,GAM31,ROI,R02,R03,1,THICK
DUI-X**2-GAMII**2
DU2-GAM2I **2-.X**2
DU3-X**2-GAM31**2
IF(DUl .LT. 0.) WRITE(6,4000) X,I,GAMII
IF (DU2 .LT. 0.) WRITE (6,4001) XIGAM21
IF (DU3 .LT. 0.) WRITE (6,4002) XIGA1431
ALPII1-SQRT(DUI)

Figure 16. (continued)
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ALPH2.'SQRT(DU2)
ALPlI3-S QRT(DU3) *LH*LHG-R02*R03*ALPH2*ALPHI+R02*RO1 AP2~H
H-RO1*R03*ALPH2**2-R02**2*ALPH1 *ALPH3
F-G*COSSALPH2*kTHICK)-SIN (ALPH2 *TH19K *H

4000 FORMAT( DUICO. X- ,Ell.4/ 1 .1 GAZ4I-*ElI. 4)
401FORMAT(' DU2<0. X-' Ell -, I1 5, GAIIZI-'EII.4)

4002 FORMAT ( DU340: X-#,E1I.4,' 1-",15 , GA1431-*,E1.4)
RETURN~
END

//DATA.INPUT DD
0.0 5200
8.0 E03 0.5 E03 8.0 E03 0.1EO 10.1E03
5.0E03 2.0E03 5.0E03

Figure 16. (continued)

AWN,
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